Skip to main content
Log in

A Nearly Exact Discretization Scheme for the FitzHugh–Nagumo Model

  • Original Research
  • Published:
Differential Equations and Dynamical Systems Aims and scope Submit manuscript

Abstract

In this paper, we apply the nearly exact discretization schemes to propose a discrete model for the FitzHugh–Nagumo model. We show that the discrete model obtained preserves the dynamics and the known features of the continuous FitzHugh–Nagumo model. We do so by performing distance-based and probability-based similarity analysis. Additionally, a sensitivity analysis is also performed to analyze the most influential parameters of the discrete system.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

References

  1. Bertram, R., Manish, T., Butte, J., Kiemel, T., Sherman, A.: Topological and phenomenological classification of bursting oscillations. Bull. Math. Biol. 57, 413–439 (1995)

    Article  Google Scholar 

  2. Corinto, F., Lanza, V., Ascoli, A., Gilli, M.: Synchronization in networks of fitzhugh–nagumo neurons with memristor synapses. In: 20th European Conference on Circuit Theory and Design (ECCTD). IEEE, pp. 608–611 (2011)

  3. De Angelis, F., De Angelis, M.: On solutions to a fitzhugh-rinzel type model. Ricerche di Matematica (2020). https://doi.org/10.1007/s11587-020-00483-y

    Article  Google Scholar 

  4. De Angelis, M.: A priori estimates for excitable models. Meccanica 48, 2491–2496 (2013)

    Article  MathSciNet  Google Scholar 

  5. De Angelis, M., Renno, P.: Asymptotic effects of boundary perturbations in excitable systems. Discrete Contin. Dyn. Syst. Ser. B 19, 2039–2045 (2014)

    MathSciNet  Google Scholar 

  6. Elaydi, S.N.: Discrete Chaos. Chapman & Hall/CRC, London (2007)

    Book  Google Scholar 

  7. Elmer, C.E., Van Vleck, E.S.: Spatially discete fitzhugh-nagumo equations. SIAM J. Appl. Math. 65, 1153–1174 (2005)

    Article  MathSciNet  Google Scholar 

  8. FitzHugh, R.: Impulses and physiological states in theoretical models of nerve membrane. Biophys. J. 1, 445–466 (1961)

    Article  Google Scholar 

  9. Foroutan, M., Manafian, J.: Taghipour-Farshi: Exact solutions for fitzhugh-nagumo model of nerve excitation via kudryashov method. Opt. Quant. Electron. (2017). https://doi.org/10.1007/s11082-017-1197-y

    Article  Google Scholar 

  10. Foweraker, J.P.A., Brown, D., Marrs, R.W.: Discrete-time stimulation of the oscillatory and excitable forms of a fitzhugh-nagumo model applied to the pulsatile release of luteinizing hormone releasing hormone. Chaos: Interdiscip. J. Nonlinear Sci. 5, 200–208 (1995)

    Article  Google Scholar 

  11. Grassetti, F., Gusowska, M., Michetti, E.: A dynamically consistent discretization method for goodwin model. Chaos Solitons Fractals 130, 109420 (2020)

    Article  MathSciNet  Google Scholar 

  12. Hodgkin, A.L., Huxley, A.F.: A quantitative description of membrane currents and its application to conduction and excitation in nerve. J. Physiol. 117, 500–544 (1952)

    Article  Google Scholar 

  13. Hollander, M., Wolfe, D. A.: Nonparametric statistical methods. Wiley Series in Probability and Mathematical Statistics, Wiley, New York-London-Sydney (1999)

  14. Hupkes, H.J., Sandstede, B.: Traveling pulses for the discrete fitzhugh-nagumo system. SIAM J. Appl. Math. 9, 827–882 (2010)

    MathSciNet  Google Scholar 

  15. Izhikevich, E.M.: Dynamical Systems in Neuroscience: The Geometry of Excitability and Bursting. The MIT Press, Cambridge (2007)

    Google Scholar 

  16. Jing, Z., Chang, Y., Guo, B.: Bifurcation and chaos in discrete fitzhugh–nagumo system. Chaos solitons fractals 21, 701–720 (2004)

    Article  MathSciNet  Google Scholar 

  17. Juzekaeva, E., Nasretdinov, A., Battistoni, S., Berzina, S., Iannotta, S., Khazipov, R., Erokhin, V., Mukhtarov, M.: Coupling cortical neurons through electronic memristive synapse. Adv. Mater. Technol. 4, 1800350 (2019)

    Article  Google Scholar 

  18. Kudryashov, N.A.: Asymptotic and exact solutions of the fitzhugh-nagumo model. Regul. Chaotic Dyn. 23, 152–160 (2018)

    Article  MathSciNet  Google Scholar 

  19. Kudryashov, N.A., Rybka, R.B., Sboev, A.G.: Analytical properties of the perturbed fitzhugh-nagumo model. Appl. Math. Lett. 76, 142–147 (2018)

    Article  MathSciNet  Google Scholar 

  20. Kwessi, E., Elaydi, S., Dennis, B., Livadiotis, G.: Nearly exact discretization of single species population models. Nat. Resour. Model. 31, e12167 (2018)

    Article  MathSciNet  Google Scholar 

  21. Mickens, R.E.: Advances in the applications of nonstandard finite difference scheme, Hackensack. World Scientific, NJ (2005)

    Book  Google Scholar 

  22. Mickens, R.E.: Difference equations: Theory, applications, and advanced topics, Monographs and Research Notes in Mathematics, xxii+553, third ed. CRC Press, Boca Raton (2015)

  23. Nagumo, J., Arimoto, S., Yoshizawa, S.: An active pulse transmission line simulating nerve axon. Proc. IRE 50, 2061–2070 (1962)

    Article  Google Scholar 

  24. Quateroni, A., Manzoni, A., Vergara, C.: The cardiovascular system: mathematical modelling, numerical algorithms and clinical applications. Acta Numer. 26, 365–590 (2017)

    Article  MathSciNet  Google Scholar 

  25. Saltelli, A., Tarantola, S., Chan, K.-S.: A quantitative model-independent method for global sensitivity analysis of model output. Technometrics 41, 39–56 (1999)

    Article  Google Scholar 

  26. Sehgal, S., Foulkes, A.J.: Numerical analysis of subcritical hopf bifurcations in the two-dimensional fitzhugh-nagumo model. Phys. Rev. E 102, 012212 (2020)

    Article  MathSciNet  Google Scholar 

  27. Sobol, I.M.: Sensitivity estimates for nonlinear mathematical models. Mat. Modelirovanie 2, 112–118 (1990)

    MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Eddy Kwessi.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Appendix

Appendix

Appendix A: Supplemental Figures for Similarity Analysis

See Fig. 13.

Fig. 13
figure 13

This figure shows the trajectory (red) of the CFHN model for parameters \(x_0=0, y_0=1, \epsilon =0.5, \gamma =0.5, a=1, I=1\), and \(T=25\). The green dashed lines represent the trajectories of the DFHN for the same parameters and for 100 values of \(\tau \), equally spaced between 0.005 and 0.3 (color figure online)

Appendix B: Supplemental Figures for Sensitivity Analysis

See Fig. 14.

Fig. 14
figure 14

a and b show the evolution of total indices from t1 to t100 for outputs \(x_{t+1}\) and \(y_{t+1}\)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kwessi, E., Edwards, L.J. A Nearly Exact Discretization Scheme for the FitzHugh–Nagumo Model. Differ Equ Dyn Syst 32, 253–275 (2024). https://doi.org/10.1007/s12591-021-00569-5

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12591-021-00569-5

Keywords

AMS Subject Classification

Navigation